- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Guo, Jingkai (2)
-
Ali, Asmer (1)
-
Fan, Deliang (1)
-
Nguyen, Thao D. (1)
-
Seppala, Jonathan E. (1)
-
Wang, Zheliang (1)
-
Yang, Li (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The non-volatile Resistive RAM (ReRAM) crossbar has shown great potential in accelerating inference in various machine learning models However, it suffers from high reprogramming energy, hindering its usage for on-device adaption to new tasks. Recently, parameter-efficient fine-tuning methods, such as Low-Rank Adaption (LoRA), have been proposed to train few parameters while matching full fine-tuning performance. However, in ReRAM crossbar, the reprogramming cost of LoRA is non-trivial and will increase significantly when adapting to multi-tasks on the device. To address this issue, we are the first to propose LoRAFusion, a parameter-efficient multi-task on-device learning framework for ReRAM crossbar via fusion of pre-trained LoRA modules. LoRAFusion is a group of LoRA modules that are one-time learned based on diverse domain-specific tasks and deployed to the crossbar, acting as the pool of background knowledge. Then given a new unseen task, those LoRA modules are frozen (i.e., no energy-hungry ReRAM cells reprograming), only the proposed learnable layer-wise LoRA fusion coefficient and magnitude vector parameters are trained on-device to weighted-combine pre-trained LoRA modules, which significantly reduces the training parameter size. Our comprehensive experiments show LoRAFusion only uses 3% of the number of trainable parameters in LoRA (148K vs. 4700K), with 0.19% accuracy drop. Codes are available at https://github.com/ASU-ESIC-FAN-Lab/LoRAFusionmore » « lessFree, publicly-accessible full text available June 29, 2026
-
Wang, Zheliang; Guo, Jingkai; Seppala, Jonathan E.; Nguyen, Thao D. (, Journal of the Mechanics and Physics of Solids)null (Ed.)
An official website of the United States government
