skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Guo, Jingkai"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The non-volatile Resistive RAM (ReRAM) crossbar has shown great potential in accelerating inference in various machine learning models However, it suffers from high reprogramming energy, hindering its usage for on-device adaption to new tasks. Recently, parameter-efficient fine-tuning methods, such as Low-Rank Adaption (LoRA), have been proposed to train few parameters while matching full fine-tuning performance. However, in ReRAM crossbar, the reprogramming cost of LoRA is non-trivial and will increase significantly when adapting to multi-tasks on the device. To address this issue, we are the first to propose LoRAFusion, a parameter-efficient multi-task on-device learning framework for ReRAM crossbar via fusion of pre-trained LoRA modules. LoRAFusion is a group of LoRA modules that are one-time learned based on diverse domain-specific tasks and deployed to the crossbar, acting as the pool of background knowledge. Then given a new unseen task, those LoRA modules are frozen (i.e., no energy-hungry ReRAM cells reprograming), only the proposed learnable layer-wise LoRA fusion coefficient and magnitude vector parameters are trained on-device to weighted-combine pre-trained LoRA modules, which significantly reduces the training parameter size. Our comprehensive experiments show LoRAFusion only uses 3% of the number of trainable parameters in LoRA (148K vs. 4700K), with 0.19% accuracy drop. Codes are available at https://github.com/ASU-ESIC-FAN-Lab/LoRAFusion 
    more » « less
    Free, publicly-accessible full text available June 29, 2026
  2. null (Ed.)